Control of plant growth and development through manipulation of cell-cycle genes.
نویسندگان
چکیده
The plant embryo is a relatively simple structure consisting of a primordial shoot and root, whose development is frozen in the form of a seed. Most development of the mature plant takes place post-embryonically, and is the consequence of cell division and organogenesis in small regions known as meristems, which originate in the embryonic shoot and root apices. Significant recent progress has been made in understanding the mechanisms that control the plant cell cycle at a molecular level, and the first attempts have been made to control plant growth through modulation of cell-cycle genes. These results suggest that there is significant potential to control plant growth and architecture through manipulation of cell division rates. However, a full realisation of the promise of such strategies will probably require a much greater understanding of cell division control and how its upstream regulation is co-ordinated by spatial relationships between cells and by environmental signals.
منابع مشابه
Interplay between cell growth and cell cycle in plants.
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. ...
متن کاملExpression of 4 Genes in Ocimum basilicum and their Relationship with Phenylpropanoids Content
Recent data showed that phenylpropanoid compound, methylchavicol is essential component of Iranian cultivars of basil. Studying their occurrence during development of plant may help to elucidate the role of phenylpropanoids in plant cell physiology. We followed the phenylpropanoids concentration and the expression of genes related to their biosynthesis during growth and development of two culti...
متن کاملCabazitaxel antiproliferative mechanism of action in U87MG human glioblastoma cells: a promising cell-cycle phase-specific radiosensitizer
Introduction: One mechanism of cell cycle manipulation and mitotic catastrophe is arrest at G2/M phase of cell cycle. Cabazitaxel, a mitotic inhibitor agent, is a second-generation semisynthetic taxane. An expected anti-neoplastic effect of Cabazitaxel is cell cycle perturbation and alteration of microtubule dynamics. In contrast to other taxane compounds, Cabazitaxel is a poo...
متن کاملThe Effect of Oxalic Acid, the Pathogenicity Factor of Sclerotinia sclerotiorum on the Two Susceptible and Moderately Resistant Lines of Sunfl ower
Background: One of the main sunfl ower diseases is the white mold Sclerotinia sclerotiorum. The oxalic acid (OA), which is one of the main pathogenicity factors of this fungus, beside the direct toxicity on the host, has other functions such as the disruption of the cell wall and chelating out the calcium ions.Objectives: Regarding the importance of this disease, it is im...
متن کاملChenopodium Botrys as a Source of Sesquiterpenes to Induce Apoptosis and G1 Cell Cycle Arrest in Cervical Cancer Cells
Conducting cell apoptosis pathways is a novel strategy in cancer treatment. This study aimed to explain that C. botrys essential oil could induce apoptosis and arrest the cell cycle in HeLa cells. Cytotoxic and apoptogenic effects of the essential oil of Jerusalem-oak (Chenopodium botrys L.), which was obtained from the aerial parts of the plant, were evaluated in HeLa cells. Cell viability was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in biotechnology
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2000